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Abstract  

This study will focus on the responses of key component of stream ecosystems (biofilm: algae, fungi 

and bacteria; and organic matter decomposition) to the simultaneous effect of hydrological disturbances 

(flow velocity reduction) and organic load pressures (provided by different oxygen concentrations). 

Microbiota responses will be determined at a mesocosm scale in terms of core functions (e.g. enzymatic 

activity) and abundance/composition changes. 
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Introduction, scope and main objectives 

   Aquatic ecosystems are susceptible to multiple stressors, including climate change, organic and 

inorganic pollutants, physical habitat alterations, water abstraction, pathogens and invasive species. 

(Arce et al. 2014, Fausch et al. 2010).  These pressures interact together generating changes on water 

availability and also on ecological and chemical quality (Ormerod et al. 2010). Such effects on 

biodiversity, ecological processes, and ultimately in ecosystem functioning, are often complex and 

difficult to predict because of synergies, feedback and cross-amplification among stressors and need to 

be disentangled. In particular, Mediterranean rivers are characterized by frequent hydrological 

disturbances including reduced connectivity often translated in standing water pools and dewatering of 

river beds due to prolonged summer droughts, followed by flood events during winter and spring 

(Gasith and Resh 1999). Additionally, most streams within Mediterranean climate are densely populated 

and are prone to water contamination from diffuse and point sources, which include inputs of municipal, 

industrial and agricultural sectors. In addition, slow-flowing and standing waters during droughts may 

promote higher water temperature, reduced dilution and increased residence time which might be 

particularly relevant for ecological impacts due to organic contamination and inherent deoxygenation.  

   Biofilms are assemblages of bacteria, algae, fungi, and other microbial organisms and detritus 

embedded in a polymeric matrix in aquatic environments (Wetzel 1983). Biofilms are one of main 

communities in lotic systems to interact with organic matter, nutrients and other chemical compounds 

(e.g. Paule et al. 2009, Rodrigues et al. 2010, Martins et al. 2012). Therefore, several studies have been 

used and supported biofilms as a reliable tool for bioassessment in freshwater systems (e.g. Ancion et al. 



 

 

2010, Battin et al. 2003, Lear and Lewis 2009).  In fact, biofilms may be used to detect the early effects 

these simultaneous pressures might have on the ecosystem, through measuring changes in their function 

(e.g. decay in enzymatic activity; decline in litter decomposition) and shifts in community structure and 

composition (Liess et al. 2009, Romani et al. 2012, Sabater et al. 2007). Is known that biofilm cell 

detachment from substrate increase with fluid velocity (Trulear and Charackis 1982) and external fluid 

velocity affects internal mass transfer (Brito and Melo 1999) and accordingly river flow significantly 

affect biofilm development, yielding higher biomass under slower flows (Battin et al. 2003). Biofilm 

microbial composition is influenced by different concentrations of humic substances (main constituent 

of organic matter and DOC in streams) in addition of flow velocities (Rodrigues et al. 2010). However, 

limited studies had addressed the effect of drought in biofilm community structure and composition. 

Romani et al. (2012) found that the drying process induced a decrease of biofilm functions (e.g. 

bacterial production and chlorophyll biomass), however both autotrophs and heterotrophs assemblages 

recovered quickly with the rewetting progress highlighting the biofilm resilience and ability for 

withstand periods of desiccation. Nevertheless, stream biofilm heterotrophs have shown to be more 

resistant to water depletion than autotrophic community towards the dewatering of streambed (Timoner 

et al. 2012). Recently, Corcoll and co-workers (2015), found that flow intermittency modulated the 

effects of chemicals on biofilm algae and bacteria: while algae revealed cumulative effects between the 

two stressors, bacteria indicated a co-tolerance effect. Reduced flow also enhanced the negative impact 

of sediment addition on aquatic biota (Matthaei et al. 2010). 

   Microbiota also are responsible for major riverine processes such as decomposition of organic 

matter, which releases nutrients into the water and could enhance biofilm growth. The decomposition of 

leaf litter entering streams is influenced by physical abrasion but is mainly a biological process 

involving macroinvertebrates detritivores, fungi and bacteria (Gessner et al. 1999). In fact, aquatic 

heterotrophic microorganisms (fungi and bacteria) are crucial for the mineralization of leaf litter and 

also render it more palatable for leaf shredding by invertebrates (Barlocher 1985, Graça 2001, 

Suberkropp 1992). Consequently, fungi and bacteria are important intermediaries in energy flow in lotic 

ecosystems (Suberkropp and Klug 1976). 

    

   Riverine biofilm composition and functions are expected to change under the effect of multiple 

stressors, in particular, organic load and flow velocity. Therefore, the aim of the doctoral study is to 

breakthrough on the knowledge regarding the response of stream biofilm to multiple stressors in 

Mediterranean rivers and to identify novel indicators of ecological status based on the use of biofilms. In 

that regard, the research objective will evaluate riverine biofilms response to flow velocity and organic 

load combined pressures, namely on the following aspects: 

1. Composition, diversity and function of heterotrophic and autotrophic biofilm communities in 

terms of fungi and algae populations. 

2. Composition and diversity of biofilm bacterial functional groups. 

3. Comparative responses in terms of composition and diversity of algae, fungi and bacteria within 

the biofilm. 

4. Riverine functional processes indicator, such as leaf litter decomposition. 

 

 

Methodology/approach  

This study will be carry out at a mesocosm scale. A mesocosm system (Fig. 1) will be 

installed at ISA (School of Agronomy, University of Lisbon) field facilities, composed by 6 

independent stainless-steel-lined channels (width 0.4 m X length 4 m X depth 0.2 m). Water will be 

collected from a nearby natural source to a central container (3000L), and then redistributed to smaller 



 

 

deposits in each artificial channel. Each channel will be equipped with a pump to allow for 

recirculation and maintenance of same conditions independently of the source container. 

In order to assess the impact of multiple stressors in stream microbial biofilm community, the 

mesocosm will be used to test the microorganism’s responses to the combination of low flow velocity 

and different organic load contamination. 

Experiments will test the microbial communities’ structural and functional responses towards 

two hydrological scenarios: a) High flow velocity (Hf; ≈ 1 m/s); and b) No flow velocity (Nf; ≈ 0 m/s) 

mimicking water scarcity with disconnected pools during summer. These hydrological treatments will 

be combined with two different levels of dissolved oxygen in the water (Low [O2] ≈ 10% and High 

[O2] ≈ 90%) resulting in 4 different treatments (2 flow velocities X 2 [O2] = Nf10; Hf10; Nf90; Hf90). 

Oxygen low concentration in the water will be induced by adding a known oxygen scavenger 

agent (sodium sulphite) to the water in the necessary amount to maintain the planned oxygen 

concentration. 

 

Biofilm response 

Biofilm will be obtained from unglazed ceramic tiles previously left to colonize for 4 weeks 

in the same natural water source supplying the mesocosm system. After colonization, biofilm tiles 

will be placed in each artificial channel in ISA mesocosm and submitted to 4 treatments (Nf10; Hf10; 

Nf90; Hf90) during 14 days. Each treatment will have 3 replicates. Tiles will be collected and 

preserved for laboratory work throughout the experiment on days 0, 3, 9 and 14 to obtain a gradient 

response. Also water of all artificial channels will be collected at the same sampling dates to 

characterize the main physical and chemical parameters ([BOD], pH, dissolved oxygen, conductivity, 

and temperature). Water nutrient concentrations (P-PO4; N-NH4; N-NO3; N-NO2; SO4
-2; Cl) will be 

determined at the beginning and at the end of the experiment. 

All biofilm community will be characterized and analysed as following: 

• Extracellular enzymatic activity of the enzymes phosphatase and glycosidase 

measured by means of fluorescent-linked substrates (methylumbelliferyl - MUF). 

• Biofilm mass losses (measured in terms of ash free dry mass) will be determined by 

scraping a known area of a biofilm tile to a known volume of distilled water that 

posteriorly will be filter through a GF/C filter (previously weighted). The filters with 

the samples will be placed in an oven at 70 °C for 72 h, weighed, ashed at 550 °C for 

4 h and reweighed to calculate AFDM. 

• Algae will be characterized in terms of total biomass by determination of chlorophyll-

a concentration contents and major groups’ composition (i.e. diatoms, green algae and 

cyanobacteria) through pigment composition analysis.  Also molecular analysis will 

be performed (PCR sequencing and DGGE) 

• Fungi will be characterized in terms of biomass (ergosterol concentration contents), 

heterotrophic plate counts (CFU) and diversity by molecular analysis (DGGE and 

PCR sequencing). 

• Bacteria will be characterized in terms of total heterotrophic plate counts (CFU) and 

diversity by molecular analysis (DGGE and PCR sequencing).  

 

Decomposition rates response 

Simultaneously, organic matter decomposition rates will be tested using leaf litter mesh bags 

with alder leaves.  

 Corse mesh bags (10 mm) with dry alder leaves will be previously colonize in stream for 3 

weeks, and then placed in mesocosm and submitted to the different treatments for 14 days. Each 

treatment will have 3 replicates. Alder leaves will be collected for analyses on days 0, 9 and 14. 



 

 

Decomposition rates will be determined in terms of AFDM, fungal biomass (ergosterol 

concentration), bacterial abundance (total counts), leaves C:N:P estoiquiometry (C, N and P total 

contents analysis) and diversity and composition of macroinvertebrate colonization. 

 

Predictive Models construction on local responses of microbial communities to multiple-

stressors 

The main goal of this task, is to forecast microbial communities local responses to the studied 

stressors by creating a predictive model with the data obtained previously (see above Biofilm 

Response section). In order to modelling ecological interactions with stressors will be employed a 

simulation software (STELLA) to assess the identifiability and to estimate the values of model 

parameters (using measured data), and also estimate prediction uncertainty. 

 

 

 

 

 

 

 

 

 

Fig. 1: Schematic construction drawing of ISA Mesocosm that will be use in the experiments 
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